If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=112+96t-16t^2
We move all terms to the left:
100-(112+96t-16t^2)=0
We get rid of parentheses
16t^2-96t-112+100=0
We add all the numbers together, and all the variables
16t^2-96t-12=0
a = 16; b = -96; c = -12;
Δ = b2-4ac
Δ = -962-4·16·(-12)
Δ = 9984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9984}=\sqrt{256*39}=\sqrt{256}*\sqrt{39}=16\sqrt{39}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-16\sqrt{39}}{2*16}=\frac{96-16\sqrt{39}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+16\sqrt{39}}{2*16}=\frac{96+16\sqrt{39}}{32} $
| -(2x+1)=8-14x | | 2(10)=+2(x-4) | | -5.3=x-11.8 | | 8.7+q=6.2 | | Y/5-14/15=y/3 | | 0.4m-0.5=0.3m | | 0.6p+4.4=22.5 | | 2x-2(4x)=6 | | -9.8=1+t | | 3/5*p+1/5(40-p)=0 | | 16+k=20.5 | | (3x+4)/(6x-1)=0 | | 4x+36=(2x-6)(2x-6) | | X²+20x-350=0 | | -1+4c=7 | | 2/3h−1/5=54/5 | | 150=60m | | 7x/12=-1/12 | | -35=-4h+1 | | 52.5y=42 | | 8+2=20;n= | | 6z+9z-12z+23-15=-5z-43-13-8 | | 7=b-7 | | 6(5x-8)=162 | | 2/3x+2=4/3x+-6 | | -2+3b=4 | | 1/4x+x+x=180 | | 7-3y=1-4y | | 1/2y=1/1/ | | 4n7n-25=40 | | -x/2+3=-10 | | 30=s-9 |